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Figure-ground organization must be given to the model because it has no provisions for 

establishing figure-ground organization on its own. This means that the model can only come into play 
after the shape in the 2D image of the 3D shape has be established.  To do this, the model is provided 
with information about which: (i) points form edges in the image, (ii) edges and vertices form contours of 
faces “out there”, (iii) edges and vertices are symmetric edges and vertices “out there”, and (iv) edges and 
vertices define volume of the 3D object “out there” (this last requirement is less critical because once 
points and edges are represented in the 3D space, their convex hull defines volume uniquely). This 
information must be provided because the a priori constraints used by the model constrain shape.  We 
call our constraints:  “symmetry, planarity, maximum compactness and minimum surface.” In our usage, 
symmetry refers to the mirror-symmetry of the object, planarity refers to the planarity of the contours of 
the object. The compactness of the object is defined as V2/S3 where V is the object’s volume and S is the 
object’s surface area. The minimum surface of the object is defined as the minimum of the total surface 
area. It is important to realize that no depth cues, not even binocular disparity, are used to recover the 3D 
shape of an object from its 2D retinal representation in our model. Depth is superfluous to its operation. 
Our maximum compactness and minimum surface constraints are completely novel in the sense that they 
have never been used in a model designed to recover 3D shape. Symmetry and planarity constraints had 
been used in models that recover 3D shape before.  Maximizing compactness is equivalent to maximizing 
the volume of an object, but keeping its surface area constant.  It is also equivalent to minimizing surface 
area, but keeping the object’s volume constant. Note that the minimum surface constraint is equivalent to 
minimizing the object’s thickness. The bottom line is that our model recovers the 3D shape of an object 
from its 2D retinal shape by selecting a 3D shape that is as compact and, also as thin, as possible, from the 
infinitely large family of 3D symmetrical shapes that have planar contours consistent with the 2D retinal 
shape used to recover the 3D object. Another way of saying this is that our recovery of the object’s 3D 
shape reflects a compromise between our novel maximum compactness and minimum surface constraints. 
The reader should realize that our model belongs to the class of regularization models designed to solve 
inverse problems (Poggio et al., 1985). 

 
Details of our Mathematics and Computations 

Applying mirror symmetry and planarity of contours constraints to recover a 3D shape 
 

Let the X-axis of the 3D coordinate system be horizontal and orthogonal to the camera’s (or 
eye’s) visual axis, the Y-axis be vertical, and the Z-axis coincide with the visual axis. Let the XY plane be 
the image. Let the set of all possible 3D shapes consistent with a given 2D orthographic retinal image be 
expressed as follows: 

{ }( ) ,I p O IΘ = =                                                               (1)  
 
where O and I represent the 3D shape and the 2D image, respectively, and p represents an orthographic 
projection from the 3D shape to the 2D image.1 There are infinitely many 3D shapes (O) that can produce 
                                                 
1 Orthographic images are used here because perspective distortions are often quite weak, especially when the 
objects are not very large and not very close to the observer. The recovery problem is more constrained, and thus, 
easier when perspective images of symmetrical shapes are used because a single perspective image leads to a unique 
recovery of shape (e.g., Rothwell, 1995). Note, however, that even with perspective images, constraints will still be 
needed because recovery is likely to be unstable if visual noise is present.  
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the same 2D image (I) because translating any point on the surface of a 3D shape along the z axis does 
not change its 2D orthographic image. Consider a subset of ΘI, in which all 3D shapes are mirror 
symmetric and their contours are planar: 
  

{ }' : is symmetric and its contours areplanar .I IO OΘ = ∈Θ                            (2) 
 

The following, which is based on Vetter & Poggio (2002), will be used to show how symmetry 
may be used to restrict the family of 3D interpretations of a given 2D image. Note, however, that this 
restriction, in itself, cannot produce a unique 3D shape. Additional constraints will be needed to recover a 
unique 3D shape. Given a 2D orthographic image Preal of a transparent mirror-symmetric 3D shape, and 
assuming that the correspondences of symmetric points of the 3D shape are known, Vetter & Poggio 
showed how to compute a virtual image Pvirtual of the shape:  
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Under this transformation, for any symmetric pair of points Preal = [XL YL XR YR]T in the 2D real (given) 
image, their corresponding pair of points in the 2D virtual image is Pvirtual = [−XR YR −XL YL]T. The 
virtual image is another orthographic image that could be produced by the same 3D shape from another 
viewing direction. Figure 1 shows an example of a 2D real and virtual image of a symmetric wire 
(transparent) shape. The virtual image is usually different from the real image. This is not true in 
degenerate cases, where 2D real image is itself mirror symmetric.  The 2D virtual and the real images are 
identical for a symmetric 2D image (up to a 2D translation) which means that Vetter & Poggio’s method 
cannot be applied. 

Note also that the 2D virtual image is computed directly from the 2D real image. Knowledge 
about the 3D shape, itself, is not required. This important fact means that the initial problem of recovering 
a 3D shape of an object from a single 2D image is transformed into a problem of recovering a 3D shape 
from two 2D images, one real and the other virtual. Clearly, having two images will lead to having a more 
restricted family of 3D recovered shapes. This is the main idea behind Vetter & Poggio’s method. We 
will explain next how the 3D shape recovery problem can be formulated and solved.  
 

 
Figure 1.  The real (left) and virtual (right) images of a 3D symmetric shape.  A, B are images of a symmetric pair of 
points a, b in the 3D shape.  A′ and B′ are the corresponding points in the virtual image.  Note that when the virtual 
image was produced, A′ was obtained (computed) from B.  But in the 3D representation, a′ is produced after a 3D 
rigid rotation of a. C, D and E, F are images of other two symmetric pairs of points, c, d and e, f. C’, D’, E’ and F’ 
are the corresponding points in the virtual image. The three open dots in the real image are the midpoints of the three 
pairs A B, C D, and E F that are images of three pairs ab, cd and ef of symmetric points in the 3D shape.  
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The 2D real image can be considered to be a 2D orthographic image of the 3D shape in its initial 
position and orientation. The 2D virtual image is a 2D image of the same 3D shape after a particular 3D 
rigid movement. Such a movement in 3D space can be expressed as follows: 

 
'v R v T .= ⋅ +

rr r                                                            (4) 
 

R is a 3x3 rotation matrix and T  is a 3x1 translation vector. 
r

'vr  and vr  are the corresponding points of the 
3D shape at two different positions and orientations.  

A 3D translation does not affect the shape or size of the 2D image in an orthographic projection.  
Specifically, translations along the direction orthogonal to the image plane have no effect, whatsoever, on 
the image, and translations parallel to the image plane result in translations of the image.  From this it 
follows that the 3D translation T

r
 of the shape can be eliminated by translating the 2D real image or 

virtual image, or both, so that one pair of the corresponding points in the two images, e.g. A and A' in 
Figure 1, coincide. Without restricting generality, let G be the origin of the coordinate system on the 
image plane and the 3D points a and a′ whose images are A and A' coincide with G (it follows that both A 
and A' also coincide with G). Now, the 2D real image can be considered an orthographic projection of the 
3D shape at its original orientation and a 2D virtual image can be considered an orthographic projection 
of the 3D shape after rotation R of the shape around the origin G. This way, the equation (4) takes the 
simpler form: 

' .iv R vi= ⋅
r r                                                                  (5) 

where vi=[Xi,Yi,Zi]T, and vi′=[Xi′,Yi′,Zi′]T.  Equation (5) can be written as follows: 
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In equation (7), the points [Xi Yi]T and [X′i Yi′]T in 2D real and virtual images are known. Huang and Lee 
(1989) derived the following relationship between [Xi Yi]T, [Xi' Yi']T and R: 

23 13 32 31' 'i i i ir X r Y r X r Y− + − =                                                (8) 

Now, let’s put the four elements of the rotation matrix R, which appear in equation (8), in a vector [r23 r13 
r32 r31]T. The direction of this vector can be computed by applying equation (8) to the three pairs of 
corresponding points in the 2D real and virtual images (e.g., B,D,F and B′D′F′). The length of this vector 
can be derived from the constraint that the rotation matrix is orthonormal: 

2 2 2 2
13 23 31 32 331r r r r r+ = + = − 2.                                               (9) 

It follows that if r33 is given, [r23 r13 r32 r31]T can be computed from two 2D images of three pairs of 
symmetric points. The remaining elements of the rotation matrix can be computed from the 
orthonormality of R. It follows that two orthographic images (real and virtual) determine R up to one 
parameter r33 that remains unknown. Note that once the rotation matrix R is known, the 3D shape can be 
computed using equation (7). This is done by computing the unknown values of the Z coordinate for each 
image point (Xi Yi). Thus, r33 completely characterizes the family of 3D symmetric shapes that are 
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consistent with (recovered from) the given image. Usually for each value of r33, two different rotation 
matrices are produced because if [r23 r13 r32 r31]T is the solution, [−r23 −r13 −r32 −r31]T  is also a solution. It 
follows that two 3D shapes are recovered for each value of r33, and these two shapes are related to one 
another by depth-reversal. 

In summary, the one-parameter family of 3D symmetric shapes can be determined from four 
points (A,B,D and F) in the 2D real image and the corresponding four pints (A′,B′,D′ and F′) in the 2D 
virtual image. Remember that the virtual points A′, B′, D′ and F′ were computed from the real points B, 
A, C and E. It follows that the recovery is based on six points A, B, C, D, E and F in the real image that 
were produced by three pairs of symmetric points a,b c,d and e,f in the 3D shape. One real and its 
corresponding virtual point (here A and A′) are used to undo the 2D translation. The other three real 
points (B,D,F) and their corresponding virtual points  B′,D′,F′) are used to compute the rotation matrix 
(R). Note that the six points a, b, c, d, e and f cannot be coplanar in the 3D shape. To guarantee that these 
six points forming three pairs of symmetric points are not coplanar in 3D, we only need to verify that the 
midpoints (u1 u2 u3) of the orthographic images of these three pairs of points (the midpoints are marked in 
blue in the real image in Figure 1) are not collinear:  

1 2 1 3( ) ( )u u u u 0.− × − ≠                                                           (10) 

In some cases, these three symmetric pairs are not coplanar in 3D, but their midpoints in the image are 
collinear. This happens when the viewing direction is parallel to the plane of symmetry of the 3D shape. 
In such a case, the 3D shape is symmetric with respect to the YZ plane, and its 2D image is, itself, 
symmetric. When this occurs, all midpoints of the images of symmetric pairs of points are on the y axis. 
As a result, the real image and virtual image are identical and the 3D shape cannot be recovered. So, the 
fact that midpoints in the real and virtual images are not collinear implies that the 3D midpoints are not 
coplanar and the viewing direction is not parallel to the plane of symmetry of the 3D shape. Note that 
there is another degenerate case that prevents recovery. This case occurs when the viewing direction is 
orthogonal to the plane of symmetry of the 3D shape. In this degenerate case, each pair of 3D symmetric 
points projects to one 2D point. In this case, recovery is prevented because there simply is not enough 
information in the image to perform the 3D recovery. Specifically, the Z-coordinates in equation (7) 
cannot be computed because both r13 and r23 are zero. 

We will now show how Vetter & Poggio’s method generalizes to the shapes of opaque objects.  
We will then discuss how the value of r33  can be determined in the case of polyhedra. Shapes of opaque 
objects are more difficult to recover because the images of opaque objects contain less information. In 
extreme cases, information about some parts of a 3D shape may be completely missing from the 2D 
image. This implies (trivially) that the 3D shape cannot be fully recovered. Here, we will restrict 
discussion to only 2D retinal images that do allow full recovery of the 3D shape of an opaque object. How 
this is done will be described next. 

It was shown above that at least three pairs of symmetric vertices of a polyhedron must be visible 
in order to compute the rotation matrix R,. Once R is computed, all symmetric pairs whose vertices are 
both visible can be recovered from Equation (7), e.g. the 3D vertices g, h, m, n and p, q in Figure 2. These 
two steps are identical to those described above for transparent objects. In the case of the image in Figure 
2, there are a total of six pairs of such vertices (the open circles in Figure 2). Recovery fails if both 
symmetric vertices are invisible. The reason for this failure is that if both [Xi Yi]T and [Xi' Yi']T are 
unknown, Zi cannot be computed. For pairs of symmetric vertices with one vertex visible and the other 
occluded, for example, the symmetric pair u and w in Figure 2, a planarity constraint can be applied. In 
this case, symmetry in conjunction with planarity of the contours of faces is sufficient to compute the 
coordinates of both of these vertices. For example, the planarity of the face gmpu implies that u is on the 
plane (s) determined by g, m and p. The vertex u is recovered as an intersection of the face s and the line 
[ux uy 0]T+λ[0 0 1]. The hidden counterpart w of u is recovered by reflecting (u) with respect to the 
symmetry plane of the 3D shape. The symmetry plane is determined by the midpoints of the three 
recovered pairs. Figure 2 shows a real and a virtual image of an opaque polyhedron that can be recovered 
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completely, that is both the visible front part and the invisible back part can be recovered.  On average, 
about 60% of the 2D images allowed a full recovery of the 3D shapes with the randomly-generated 
polyhedra we used and with randomly-generated 3D viewing orientations, Interestingly, once the 
recovery of an opaque object is possible, the recovery is unique for a given value of r33: the depth-
reversed version of the 3D shape is excluded by the constraint that the invisible vertex must be behind its 
visible symmetric counterpart. Remember that for transparent (wire) shapes, there are always two 3D 
shapes related to one another by depth reversal. So, paradoxically, opaque shapes, which provide less 
information in the image, are actually less ambiguous than transparent shapes.   

 
Figure 2.  A real (left) and a virtual (right) image of a 3D symmetric opaque polyhedron. Points G, H, M, N, P, Q 
and U are images of the 3D vertices g, h, m, n, p, q and u, respectively. The symmetric pairs gh, mn, pq can be 
reconstructed from equation (7) once the rotation matrix R is known since both points of these pairs are visible. 
There are six pairs of such vertices. These pairs are marked by solid dots. The vertex u, which resides on the plane 
determined by vertices g, m and p, is reconstructed from the planarity constraint. The invisible symmetric 
counterpart w of vertex u is obtained by reflecting u with respect to the symmetry plane. There are two such vertices, 
whose reconstruction used both symmetry and planarity constraint. These vertices are marked by open dots. 
 

So far, we have described how the one-parameter family ΘI’ of 3D shapes is determined.  This 
family is characterized by r33.  For each value of r33, one, or at most two, shapes are recovered.  All 3D 
shapes from this family project to the same 2D image (the real image). All of them are symmetric and the 
contours are planar. Because r33 is an element of a rotation matrix, it is bounded: 

}{ 33 33' ( ) :  1 1I IO g r r .= = − ≤ ≤                                              (11) Θ

Next, we describe two shape constraints, called “maximum compactness” and “minimum surface” that 
are used to determine the value of the unknown parameter r33. As emphasized in the introduction, these 
constraints are novel; until now they had never been used in a shape recovery model. 
 
Applying the maximum compactness constraint 
A 3D compactness C of shape O is defined as follows: 

2

3
( )( ) ,
( )

V OC O
S O

=                                                               (12) 

where V(O) and S(O) are the volume and surface area of the shape O, respectively.  It is important to note 
that compactness is unit-free, and, therefore independent of O’s size. Its value depends only on its shape. 
Applying this maximum compactness constraint allows recovery of a unique 3D shape. Specifically, 
selecting the maximally compact 3D shape from the one-parameter family of 3D shapes that was 
recovered by the method we developed (based on Vetter and Poggio’s (2002) algorithm), leads to a 
unique 3D shape. It is important to note that we do not have a proof of this claim that the recovery by 
means of this method is always unique. But, we have recovered several thousands of 3D shapes with this 
method in our simulations and the result has always been unique.  

Maximizing C(O) corresponds to maximizing the volume of O for a given surface area, or 
minimizing surface area of O for a given volume. Compactness defined in equation (12) is a 3D version 
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of the 2D compactness constraint used in the past for the reconstruction of surfaces (e.g. Brady & Yuille, 
1983). The 2D compactness of a closed contour is defined as a ratio of the surface’s area enclosed by the 
contour to the perimeter, squared. The circle has maximal compactness in the family of 2D shapes. The 
sphere has maximal compactness in the family of 3D shapes. Recall that the Gestalt psychologists 
considered the circle and the sphere to be the simplest, and therefore, the “best” shapes (Koffka, 1935). 
They were the simplest because they were the most symmetrical of all shapes. The relationship between 
symmetry and compactness was established formally by the Steiner symmetrization operation (Polya & 
Szego, 1951).  

Note that our maximum 3D compactness is a generalization of the minimum variance of angles 
constraint used previously to recover the shapes of polyhedra (Marill, 1991; Sinha, 1995; Leclerc & 
Fischler, 1992; Chan et al., 2006). The maximum compactness constraint, like the minimum variance of 
angles constraint, “gives” the 3D object its volume. It is important to note that the minimum variance of 
angles constraint is very limited, it can only be applied to polyhedra. The maximum compactness 
constraint, on the other hand, is much less confined. It can be applied to almost any 3D shape.  
 
Applying the minimum surface constraint 
This constraint is quite straightforward. It simply chooses the 3D object whose total surface area S(O) is 
minimal. In other words, the model maximizes the expression 1/S(O). If there were no other constraint, 
the resulting 3D object would be flat, it would have no volume, whatsoever. But, remember that this 
constraint will always be applied to objects that actually do have some volume. It follows that our 
minimum surface constraint always produces the thinnest possible object, that is, the object with the 
smallest range in depth. We already know that maximizing compactness is useful. Why is making an 
object as thin as possible, in other words, less than maximally compact, useful? It is useful because it 
allows the veridical recovery of shapes. They can be recovered as they are “out there.” Said in technical 
parlance, recovering the 3D shape, which has the smallest range in depth, is useful because it minimizes 
the sensitivity of the 2D image to rotations of the 3D shape. This makes the 3D shape recovered most 
likely to be veridical. Combining a maximum compactness with a minimum surface constraint should 
lead to the best recovery of 3D shapes in the sense that the model will be most likely to achieve shape 
constancy with real 3D objects.  

How should these two constraints be combined? Several combination rules were tried, and the 
following seems to be optimal: 

 
 V(O)/S(O)3       (13) 
 
In words, our model recovers the 3D shape that maximizes the ratio defined in eq. (13). One way to 
visualize how this combination rule was produced is to note that this ratio has the form, Vn/S3. 
Maximizing Vn/S3 for n=2 represents the maximum compactness constraint, while maximizing Vn/S3 for 
n=0 represents the minimum surface constraint. The ratio in eq. (13) is the geometric mean of the two 
ratios. 
 
The model is robust in the presence of noise in the image 
 Our model (described just above) assumes that there is no noise in the retinal (or camera) image. 
Real images, however, always have some noise. How can a model such as ours handle image noise? This 
is an important question once one wants a model to recover the 3D shapes of real objects in real 
environments from their 2D retinal images. Noise can be handled at three different stages of the model. 
First, it can be determined whether pairs of symmetric points form a set of parallel line segments in the 
image. In the absence of noise, they must be parallel because the parallelism of these lines is invariant in 
an orthographic projection (Sawada & Pizlo, 2008). If they are not parallel because of noise and/or 
because of uncertainty in the initial figure-ground organization, their positions can be changed so as to 
make these line segments parallel. Clearly, there is more than one way to do this For example, one can 
minimize the sum of squared distances, representing the change of the positions of the image points. An 
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alternative way to make the line segments connecting pairs of symmetric points parallel is to apply a 
least-squares approximation at the stage at which the one-parameter family of 3D symmetrical shapes is 
produced. It is important to note that a least-squares correction that makes the line segments parallel will 
not ensure the planarity of the faces of the 3D polyhedron. Planarity can, however, be restored at the very 
end of the recovery process by modifying the depths of individual points. Preliminary tests of these three 
methods for correcting noise were performed with synthetic images and we found that our 3D shape 
recovery model was quite robust in the presence of appreciable noise, suggesting that it will probably 
work well with realistic images in realistic environments. 
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